Natural time s ales for neural
نویسندگان
چکیده
منابع مشابه
Feed-Forward and Recurrent Neural Networks in Signal Prediction
The paper is devoted to time series prediction using linear, perceptron and Elman neural networks of the proposed pattern structure. Signal wavelet de-noising in the initial stage is discussed as well. The main part of the paper is devoted to the comparison of different models of time series prediction. The proposed algorithm is applied to the real signal representing gas consumption.
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملINTERVAL ARTIFICIAL NEURAL NETWORK BASED RESPONSE OF UNCERTAIN SYSTEM SUBJECT TO EARTHQUAKE MOTIONS
Earthquakes are one of the most destructive natural phenomena which consist of rapid vibrations of rock near the earth’s surface. Because of their unpredictable occurrence and enormous capacity of destruction, they have brought fear to mankind since ancient times. Usually the earthquake acceleration is noted from the equipment in crisp or exact form. But in actual practice those data may not be...
متن کاملOptimum Design of Liquified Natural Gas Bi-lobe Tanks using Finite Element, Genetic Algorithm and Neural Network
A comprehensive set of ten artificial neural networks is developed to suggest optimal dimensions of type ‘C’ Bi-lobe tanks used in the shipping of liquefied natural gas. Multi-objective optimization technique considering the maximum capacity and minimum cost of vessels are implemented for determining optimum vessel dimensions. Generated populations from a genet...
متن کاملPREDICTION OF NONLINEAR TIME HISTORY DEFLECTION OF SCALLOP DOMES BY NEURAL NETWORKS
This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number o...
متن کامل